Resultados

Se espera que el programa genere importantes avances en el campo científico y tecnológico, pese a tener una orientación eminentemente práctica ya que pretende cubrir la carencia de tecnologías necesarias para mejorar la gestión de la calidad del aire y dotar a sus gestores de herramientas capaces de evitar importantes costes sociales y económicos. Se espera que los principales resultados de los distintos objetivos planteados sean los siguientes:

Contraste y aplicación de redes de sensores fiables para la medida de la calidad del aire

Obtención de un sistema de modelización urbana que integre de modo consistente todas las escalas relevantes, incluyendo modelos CFD de alta resolución y modelos de emisiones que permitan incrementar la capacidad operativa de planificación, evaluación y gestión en los núcleos urbanos de la Comunidad de Madrid.

Desarrollo de una base datos de campañas de medidas experimentales en hot-spots urbanos y de contaminación de fondo que contribuya a mejorar el conocimiento sobre los distintos niveles de contaminación, sus causas y las influencias de las distintas escalas de transporte para los principales contaminantes

ARTÍCULOS

  • Martilli A., Sanchez B., Rasilla D., Pappaccogli D., Allende F., Martin F., Román-Cascón C., Yagüe C., Fernández F. Simulating the pollutant dispersion during persistent Wintertime Thermal Inversions over urban areas. The case of Madrid. Atmospheric Research, volume 270, 2022, 106058. https://doi.org/10.1016/j.atmosres.2022.106058
  • Santiago J.L., Rivas E., R. Buccolieri, Martilli A., Vivanco M. G., Borge R., Gatto E., Martín 2022. Indoor-outdoor pollutant concentration modelling: a comprehensive urban air quality and exposure assessment. Air Quality, Atmosphere & Health, 1-26. https://doi.org/10.1007/s11869-022-01204-0
  • Rivas E., Santiago J. L., Martín F., Martilli  Impactof natural ventilation on exposure to SARS-CoV 2 in indoor/semi-indoor terraces using CO2 concentrations as a proxy.Journal of Building Engineering 46, 103725. https://doi.org/10.1016/j.jobe.2021.103725
  • Santiago J.L., Rivas E., Sanchez B., Buccolieri R., Esposito A., Martilli A., Vivanco MG., Martín F, 2022. Impact of Different Combinations of Green Infrastructure Elements on Traffic-Related Pollutant Concentrations in Urban Areas. Forests, 13(8), 1195. https://doi.org/10.3390/f13081195
  • Jung D., Lejarraga, Borge R., de La Paz D.,  Cordero JM. Assessment of the Madrid region air quality zoning based on mesoscale modelling and K-means clustering.​ Atmospheric Environment, Volume 287, 15October 2022,119258 https://doi.org/10.1016/j.atmosenv.2022.119258
  • Cordero JM., Borge R. Meteorological-normalized air quality improvement in the Community of Madrid during the COVID-19 lockdown due to emission changes.​Frontiers in Sustainable Cities. May 2022 | Volume 4 | Article 869000
  • Cordero J.M., Núñez A., García A.M., Borge R. 2021. Assessment and statistical modelling of airborne microorganisms in Madrid. Environmental Pollution. Volume 269-116124. https://doi.org/10.1016/j.envpol.2020.116124
  • Núñez A., García A.M., Moreno D.A., Guantes R. 2021. Seasonal changes dominate long-term variability of the urban air microbiome across space and time. Environment International. Volume 150-106423. https://doi.org/10.1016/j.envint.2021.106423
  • Sánchez-Parra B., Núñez A., García A.M., Campoy P., Moreno D.A. 2021. Distribution of airborne pollen, fungi and bacteria at four altitudes using high-throughput DNA sequencing. Atmospheric Research. Volume 249-105306. https://doi.org/10.1016/j.atmosres.2020.105306
  • Cordero JM., Narros A., Gutiérrez-Bustillo AM., de la Paz, D., Borge R. Predicting the Olea pollen concentration with a machine learning algorithm ensemble. Int J Biometeorol65, 541–554 (2021). https://doi.org/10.1007/s00484-020-02047-z
  • Núñez A., García A.M. Effect of the passive natural ventilation on the bioaerosol in a small room. Building and Environment
  • J.L.  Santiago, R. Borge, B. Sanchez, C. Quaassdorff, D. de la Paz, A. Martilli, E. Rivas, F. Martín.,2020.“Estimates of pedestrian exposure to atmospheric pollution using high-resolution modelling in a real traffic hot-spot”  Science of The Total Environment 2020. 755(2021) 142475 https://doi.org/10.1016/j.scitotenv.2020.142475
  • Santiago JL., Sanchez B., Quaassdorff C., de la Paz D., Martilli A., Martín F., Borge R., Rivas E., Gómez-Moreno FJ., Díaz E, Artiñano B., Yagüe C., Vardoulakis S., 2020. “Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain)”. Atmospheric Pollution Research 11, 141-155. https://doi.org/10.1016/j.apr.2019.10.001
  • Borge R., Requia WJ.,, Yagüe C., Jhun I., Koutrakis P., “Impact of weather changes on air quality and related mortality in Spain over a 25 year period [1993–2017]” (Environment International, 2019) https://doi.org/10.1016/j.envint.2019.105272
  • Santiago, J. L., Sanchez, B., Quaassdorff, C., de la Paz, D., Martilli, A., Martín, F., Borge, R., Rivas, E., Gómez-Moreno, F.J., Díaz, E., Artiñano, B., Yagüe, C., Vardoulakis, S., 2019. “Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain)”. Atmospheric Pollution Research.
  • Núñez, A.,Amo de Paz G.,Rastrojo A.,et al. 2019.“Temporal patterns of variability for prokaryotic and eukaryotic diversity in the urban air of Madrid (Spain). Atmos. Environ. 217, 116972. https://doi.org/10.1016/j.atmosenv.2019.116972 
  • Borge, B. Artíñano, C. Yagüe, F.J. Gomez­Moreno, A.Saiz­Lopez, M. Sastre, A. Narros, D. García­ Nieto, N. Benavent, G. Maqueda, M. Barreiro, J.M.d e Andrés, Á. Cristóbal. “Application of a short term air quality action plan in Madrid (Spain) under a high­pollution episode Part I: Diagnostic and analysis from observations”. Science of The Total Environment (2018)
  • Borge, J.L. Santiago, D. de la Paz, F. Martín, J. Domingo, C. Valdés, B. Sánchez, E. Rivas, M.T. Rozas, S. Lázaro, J. Pérez, A. Fernández. “Application of a short term air quality action plan in Madrid (Spain) under a high­pollution episode ­ Part II: Assessment from multi­scale modeling”. Science of The Total Environment (2018) https://doi.org/10.1016/j.scitotenv.2018.04.32
  • Cordero J.M., Borge R., Narros A..“Using statistical methods to carry out in field calibrations of low cost air quality sensors”. Sensors and Actuators B 267 (2018) 245–254 https://doi.org/10.1016/j.snb.2018.04.021

CONGRESOS

  • Santiago J.L., R. Borge, B. Sánchez, C. Quaassdorff, D. de la Paz, A. Martilli, E. Rivas, F. Martín, 2019. “Modelling pedestrian exposure in an urban hot-spot combining results from a computational fluid dynamic model and pedestrian microsimulations”. (Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 19th HARMO, (Bélgica, 3-6 junio 2019).
  • Santiago J.L., R. Buccolieri, E. Rivas, B. Sanchez, A. Martilli, R. Alonso, F. Martín, 2019. “On the influence of trees on ventilation of a real street in Pamplona (Spain)”. (Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 19th HARMO, (Bélgica, 3-6 junio 2019).

PATENTES

  • Método de detección por PCR de la bacteria Legionella pneumophila en muestras ambientales y/o clínicas. Inventores: Sánchez Parra B., Núñez Hernández A., Moreno Gómez D.A. 04/03/2021. ES2702117.